The Dirichlet Problem for Superdegenerate Differential Operators
نویسنده
چکیده
Let L be an infinitely degenerate second-order linear operator defined on a bounded smooth Euclidean domain. Under weaker conditions than those of Hörmander, we show that the Dirichlet problem associated with L has a unique smooth classical solution. The proof uses the Malliavin calculus. At present, there appears to be no proof of this result using classical analytic techniques. Le Probléme De Dirichlet Pour Des Operateurs Differentiels Superdégénérés RÉ SUMÉ. Soit L un opérateur linéaire défini sur un domaine borné régulier de l’espace euclidien avec une dégénérescence infinie. Sous des conditions plus faibles que celles de Hörmander, on montre que le problème de Dirichlet associé à L a une solution régulière classique unique. La démonstration utilise le calcul de Malliavin. Il semble qu’il n’y ait à cette date aucune démonstration de ce résultat par des techniques analytiques classiques. Version française abrégée. Soit D un domaine borné régulière de R dont la frontière ∂D est régulière. Soient X0, . . . , Xn des champs de vecteurs et c une fonction à valeurs réelles, tous définis et réguliers dans un voisinage ouvert de D̄. Notons L l’opérateur différentiel de second ordre L = n
منابع مشابه
Existence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کامل